3.7: Electrical Circuits

Here we examine an RLC electric circuit which consists of

1. A resistor with a resistance of R ohms.
2. An inductor with an inductance of L henries, and
3. A capacitor with a capacitance of C farads.

These objects are in a series after the electromotive force (such as a battery of generator) that supplies a voltage of $E(t)$ volts at time t. If the switch is closed, this results in a current of $I(t)$ amperes in the circuit and a charge of $Q(t)$ coulombs on the capacitor at time t. The relation between Q and I is given by

$$
\begin{equation*}
\frac{d Q}{d t}=I(t) \tag{1}
\end{equation*}
$$

According to elementary properties of electricity, the voltage drops across the three circuit elements are shown above. With the help of Kirchoff's Law we arrive at the differential equation

$$
\begin{equation*}
L \frac{d I}{d t}+R I+\frac{1}{C} Q=E(t) \tag{2}
\end{equation*}
$$

Substituting (2) into (1) we get the equation

$$
\begin{equation*}
L Q^{\prime \prime}+R Q^{\prime}+\frac{1}{C} Q=E(t) \tag{3}
\end{equation*}
$$

for the charge Q, or more commonly,

$$
\begin{equation*}
L I^{\prime \prime}+R I^{\prime}+\frac{1}{C} I=E^{\prime}(t) \tag{4}
\end{equation*}
$$

for the current I.

Question 1. Does this look familiar to the mass-spring-dashpot mechanical system

$$
m x^{\prime \prime}+c x^{\prime}+k x=F(t)
$$

from Section 3.4 and 3.6? What transformations would you make to create a mechanical-electrical analogy?

Question 2. Why would this analogy be useful in practice?

Example 1. Consider an RLC circuit with $R=50$ ohms $(\Omega), L=0.1$ henry (H), and $C=5 \times 10^{-4}$ farad (F). At time $t=0$, when both $I(0)$ and $E(0)$ are zero, the circuit is connected to a $110-\mathrm{V}, 60-\mathrm{Hz}$ alternating current generator. Find the current in the circuit and the time lag of the steady periodic current behind the voltage.

Homework. 1, 7, 11-15 (odd)

